ANNEX-2 小水力発電
活動成果報告
平成24年2月16日
財団法人 新エネルギー財団
水力本部 国際部 橋本雅一
目次

- 小水力発電の国内外の動向
- Annex-2（小水力発電）活動概要
- 小水力発電に関わる革新的技術の調査
 - 調査概要
 - 調査方法
 - 調査結果の概要
 - まとめ

【新型水車・改良水車に関する技術情報】
未開発地点開発最適化調査（5.5次調）

- 大部分が流れ込み式（地点数：91%，出力：77%，電力量：85%）
- 最大使用水量では1.0〜5.0m³/sの地点が多い（64%）
- 最大出力では1,000〜5,000kWの地点が多い（68%）

未開発地点開発最適化調査（平成8年3月）：開発難易度A・Bランク 371地点
未利用落差発電包蔵水力調査

ダム利用発電(971地点)

- 河川維持用水と砂防えん堤を利用した発電は、比較的有効落差が低いものが多い
- 利水放流水を利用した発電は、最大使用水量が小さい所に集中

水路利用発電(418地点)

- 上水道を利用した地点では、最大使用水量は1.0m³/s以下で、有効落差10mを超える小流量・高落差地点が多い
- 下水道を利用した地点では、ほとんどの地点が有効落差10m以下で、有効落差5m以下の超低落差地点も多い

（出典）平成20年度中小水力開発促進指導事業基礎調査（未利用落差発電包蔵水力調査）報告書
ヨーロッパの小水力発電開発状況（＜10MW）

EU-27 包蔵水力量および既開発（2009年）計画（2020年）発電電力量

（出典：Stream Map/HYDI Database）
ヨーロッパ主要国の助成制度（2009年）

<table>
<thead>
<tr>
<th>国名</th>
<th>助成制度</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>オーストリア</td>
<td>固定価格買取制度</td>
<td>新設／最低増分電力量50%以上（2009年末まで）：37.6〜62.3 €/MWh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>最低増分電力量15%以上（2009年末まで）：59.4〜32.9 €/MWh</td>
</tr>
<tr>
<td></td>
<td>固定価格買取制度</td>
<td>“97” 契約：55〜65 €/MWh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“H07” 契約：60〜100 €/MWh</td>
</tr>
<tr>
<td>フランス</td>
<td>固定価格買取制度</td>
<td>“97” 契約：55〜65 €/MWh</td>
</tr>
<tr>
<td></td>
<td>固定価格買取制度</td>
<td>“H07” 契約：60〜100 €/MWh</td>
</tr>
<tr>
<td>ドイツ</td>
<td>固定価格買取制度</td>
<td>出力500 kW以下：11.67 €ct/kWh.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>出力500 kW以上10 MW以下：6.32 €ct/kWh</td>
</tr>
<tr>
<td>イタリア</td>
<td>固定価格買取制度</td>
<td>220 €/MWh + VAT (10%)</td>
</tr>
<tr>
<td>スペイン</td>
<td>固定価格買取制度</td>
<td>10 MW以下：初期25年間：8.2519 c€/kWh，以降7.4268 c€/kWh</td>
</tr>
<tr>
<td></td>
<td>固定価格買取制度</td>
<td>10 MW以上50 MW以下：FIT計算式に基づる</td>
</tr>
<tr>
<td></td>
<td>固定価格買取制度</td>
<td>10 MW以下：初期25年間 保険料2.6459 c€/kWh，以降1.4223 c€/kWh</td>
</tr>
<tr>
<td></td>
<td>固定価格買取制度</td>
<td>10 MW以上50 MW以下：初期25年間 保険料2.2263 c€/kWh，以降1.4223 c€/kWh</td>
</tr>
<tr>
<td>スウェーデン</td>
<td>電力証書</td>
<td>1.5 MW以下の小水力電力証書（2003.4.30〜2007.1.1に運転開始で2012年末まで）</td>
</tr>
</tbody>
</table>

（出典：Stream Map/HYDI Database）
アメリカの非発電用ダム（＞10ft≒3m）における
包蔵水力量（＞1MW）：54,000ダム/12.6GW
Annex-2（小水力発電）の活動概要

第1期から活動を継続

参加国
フィンランド（Kemijoki Oy社）
日本（新エネルギー財団）
ノルウェー（水資源・エネルギー庁）

第3期（2005年〜2009年）活動テーマ

① Subtask-A3：政策と経験
参加各国の水力開発に係る政策、許認可手続き、開発促進策等を取りまとめた国別報告書（Country Report）を作成し、より効果的・効率的な開発促進策等を提言する。

② Subtask-A4：定期的なワークショップの開催

③ Subtask-B2：革新的技術
小水力発電の開発促進を目的として、小水力発電に係るさまざまな革新的技術情報を収集し、広く情報発信することで新技術の導入を図る。

④ Subtask-B5：コンピューター・ソフトの開発と水平展開
カナダが主導して開発している小水力発電の計画・基本設計のためのコンピューターソフトの紹介と普及を図る。
小水力発電に関わる革新的技術の調査（Subtask-B2）調査概要

【目的】
- 小水力発電所の新設や既存設備の更新に関する事例の情報収集および普及
- 小水力発電の適用範囲の拡大、効率向上、環境保全等の観点から調査・評価

【参加国】
- リーダー：日本（宮永洋一：電力中央研究所）
- メンバー：カナダ、ノルウェー
 ＜協力＞
- ESHA：European Small Hydropower Association（欧州小水力協会）
活動経緯

<table>
<thead>
<tr>
<th>年月</th>
<th>活動内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006年8月</td>
<td>活動計画の提示（ポートランド／アメリカ）</td>
</tr>
<tr>
<td>2006年12月</td>
<td>活動計画修正および承認</td>
</tr>
<tr>
<td>2007年5月</td>
<td>革新的技術一覧の提示（オタワ／カナダ）</td>
</tr>
<tr>
<td>2007年7月</td>
<td>質問票の提示（チャタヌーガ／アメリカ）</td>
</tr>
<tr>
<td>2007年9月</td>
<td>質問票の発送</td>
</tr>
<tr>
<td>2008年6月</td>
<td>進捗状況報告（ロバニエミ／フィンランド）</td>
</tr>
<tr>
<td>2009年2月</td>
<td>アンケート調査の終了および水力専門家による技術評価</td>
</tr>
<tr>
<td>2009年10月</td>
<td>最終成果（案）の承認（越後湯沢／日本）</td>
</tr>
<tr>
<td>2010年2月</td>
<td>最終成果の承認（トロムソ／ノルウェー）</td>
</tr>
<tr>
<td>2010年7月</td>
<td>最終成果の報告（シャーロット／アメリカ）</td>
</tr>
</tbody>
</table>
革新的技術の調査

調査対象
基本的に10MW以下の規模を対象とする
（小水力発電に適用可能な技術は考慮に入れる）

調査項目
(1) 技術的な分類
(2) 技術的な特徴
(3) 適用範囲
(4) 適用実績

革新性の評価
- コスト低減
- 効率向上
- 信頼性の向上
- 適用性・適用範囲の拡大
- 運転・維持管理支援
- 環境影響緩和
小水力発電技術の主要分類

<table>
<thead>
<tr>
<th>主題</th>
<th>目的</th>
<th>主要分類</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 電気・機械設備</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. コスト/時間低減</td>
<td>111. 高効率水車</td>
</tr>
<tr>
<td></td>
<td></td>
<td>112. 経済的水車</td>
</tr>
<tr>
<td></td>
<td>12. 適用性の拡大</td>
<td>121. 低落差水車</td>
</tr>
<tr>
<td></td>
<td></td>
<td>122. 可変速水車</td>
</tr>
<tr>
<td></td>
<td></td>
<td>123. 永久磁石発電機</td>
</tr>
<tr>
<td></td>
<td>13. 信頼性の改善</td>
<td>131. バルブ技術</td>
</tr>
<tr>
<td></td>
<td></td>
<td>132. 点検技術</td>
</tr>
<tr>
<td>2. プロジェクトの計画と設計</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21. コスト/時間低減</td>
<td>211. コンピュータ化された計画ツール</td>
</tr>
<tr>
<td></td>
<td>22. 設計最適化</td>
<td>221. コンピュータ化された設計ツール</td>
</tr>
<tr>
<td></td>
<td>23. 安全性の確保</td>
<td>231. 地質と地盤の評価方法</td>
</tr>
<tr>
<td>3. 建設（土木，電気・機械）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31. コスト/時間低減</td>
<td>311. 既設設備の利用</td>
</tr>
<tr>
<td></td>
<td></td>
<td>312. 新材料の利用</td>
</tr>
<tr>
<td></td>
<td></td>
<td>313. 設備の簡素化</td>
</tr>
<tr>
<td></td>
<td></td>
<td>314. 導水路掘削技術</td>
</tr>
<tr>
<td></td>
<td>32. 安全性の確保</td>
<td>321. 基礎安定工法</td>
</tr>
<tr>
<td>4. 運転・保守</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41. コスト/時間低減</td>
<td>411. 電気・機械保守の簡素化</td>
</tr>
<tr>
<td></td>
<td></td>
<td>412. 自動制御装置</td>
</tr>
<tr>
<td></td>
<td>42. 効率的管理</td>
<td>421. 堆砂制御</td>
</tr>
<tr>
<td></td>
<td></td>
<td>422. 漂流物管理</td>
</tr>
<tr>
<td></td>
<td></td>
<td>423. 修繕と安全性の評価方法</td>
</tr>
<tr>
<td></td>
<td></td>
<td>424. 電気・機械保守の効率化</td>
</tr>
<tr>
<td>5. 環境</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>51. 魚類保護</td>
<td>511. 魚に優しい水車</td>
</tr>
<tr>
<td></td>
<td></td>
<td>512. 魚道</td>
</tr>
<tr>
<td></td>
<td></td>
<td>513. 迷入防止</td>
</tr>
<tr>
<td></td>
<td>52. 水質保全</td>
<td>521. 環境に優しい潤滑油</td>
</tr>
<tr>
<td></td>
<td></td>
<td>522. 油を使用しない機械</td>
</tr>
<tr>
<td></td>
<td>53. 景観保全</td>
<td>531. 景観設計</td>
</tr>
<tr>
<td></td>
<td></td>
<td>532. 緑化</td>
</tr>
<tr>
<td></td>
<td></td>
<td>533. 地下構造物</td>
</tr>
<tr>
<td>6. 社会的受容</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>61. 多目的利用</td>
<td>611. 多目的小水力プロジェクト</td>
</tr>
<tr>
<td></td>
<td></td>
<td>612. 地域社会との協調</td>
</tr>
<tr>
<td></td>
<td>62. 便益共有</td>
<td>621. 便益共有</td>
</tr>
</tbody>
</table>

セミナー「再生可能エネルギーとしての水力発電の価値と課題」 - IEA 水力実施協定報国内告会 -
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 名称</td>
<td>主題・製品名</td>
</tr>
<tr>
<td>2 分類</td>
<td>技術分類
目的分類
キーワード</td>
</tr>
<tr>
<td>3 実施機関</td>
<td>出資機関
開発機関</td>
</tr>
<tr>
<td>4 概要</td>
<td></td>
</tr>
<tr>
<td>5 特徴</td>
<td>技術性能
費用対効果
環境適合性</td>
</tr>
<tr>
<td>6 適用範囲</td>
<td>基本仕様
用途
適用条件</td>
</tr>
<tr>
<td>7 技術段階</td>
<td>現在の状況（研究段階／商用段階）
実施期間</td>
</tr>
<tr>
<td>8 適用実績</td>
<td>試験結果（研究開発または実証段階）
納入実績（商用段階）</td>
</tr>
<tr>
<td>9 評価</td>
<td></td>
</tr>
<tr>
<td>10 参考文献</td>
<td></td>
</tr>
<tr>
<td>11 添付資料</td>
<td></td>
</tr>
<tr>
<td>12 問い合わせ先</td>
<td>機関・部署名
住所
電話・FAX
URL・Email</td>
</tr>
</tbody>
</table>
調査結果の概要

◆ 主題分類

- 電気・機械設備
- プロジェクトの計画・設計
- 建設
- 運転・保守
- 環境・社会的受容

◆ 技術分類

- 新型水車・改良水車
- 土木技術
- 電気・機械保守
- 計画・設計ツール
- その他

◆ 開発機関の国別分類

- 日本
- カナダ
- ノルウェー
- その他

セミナー「再生可能エネルギーとしての水力発電の価値と課題」
－IEA水実施協定報国内告会－
新型水車・改良水車に関する技術の特徴

<table>
<thead>
<tr>
<th>分類番号</th>
<th>技術の特徴</th>
<th>出力(kW/unit)</th>
<th>落差(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112-2</td>
<td>高効率フランシス水車</td>
<td>500-4,000</td>
<td>50-230</td>
</tr>
<tr>
<td>112-4</td>
<td>パケット着脱式ペルトン水車</td>
<td>4,400-4,900</td>
<td>280-450</td>
</tr>
<tr>
<td>122-1</td>
<td>可変速フランシス水車</td>
<td>1,000-20,000</td>
<td>45-84</td>
</tr>
<tr>
<td>124-1</td>
<td>フランシス水車渦流抑止出口装置</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>311-6</td>
<td>省スペース立軸バルブ水車</td>
<td>13,500</td>
<td>15.5</td>
</tr>
<tr>
<td></td>
<td>＜出力1,000kW以上＞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112-1</td>
<td>高効率立軸マイクロペルトン水車</td>
<td>15-150</td>
<td>>30</td>
</tr>
<tr>
<td>121-1</td>
<td>超低落差可変速水車発電機</td>
<td>100-500</td>
<td>1.4-3.2</td>
</tr>
<tr>
<td>123-1</td>
<td>低落差マイクロクロスフロー水車発電機</td>
<td>0.5-1</td>
<td>2-10</td>
</tr>
<tr>
<td>311-3</td>
<td>低落差マイクロカプラン水車発電機</td>
<td>30</td>
<td>2-3</td>
</tr>
<tr>
<td>311-5</td>
<td>スクリュー型水車発電機</td>
<td>3-300</td>
<td>1-10</td>
</tr>
<tr>
<td>313-2</td>
<td>サイホン式魚保護型小水力発電システム</td>
<td>130</td>
<td>4</td>
</tr>
<tr>
<td>112-3</td>
<td>管路挿入型フランシス水車</td>
<td><200</td>
<td>30-70</td>
</tr>
<tr>
<td>311-1</td>
<td>管路挿入型バルブ水車発電機</td>
<td>3-90</td>
<td>3-70</td>
</tr>
<tr>
<td>311-2</td>
<td>管路挿入型プロペラ水車発電機</td>
<td>3-250</td>
<td>2-20</td>
</tr>
<tr>
<td>311-4</td>
<td>管路挿入型超小型フランシス水車</td>
<td>0.5-9</td>
<td>8-39</td>
</tr>
<tr>
<td>313-1</td>
<td>管路挿入型オイルレスプロペラ水車発電機</td>
<td>1-200</td>
<td>2-20</td>
</tr>
<tr>
<td>511-1</td>
<td>魚保護型水車</td>
<td>-</td>
<td><30</td>
</tr>
<tr>
<td></td>
<td>＜出力1,000kW未満＞</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
まとめ (1)

- 小水力発電の開発は、一般的に大規模開発で得られるスケールメリットがない。
- 水力発電設備のコストダウン・効率向上・信頼性向上・適用性拡大等を図る必要がある。
- 新たに水力発電事業に参画する事業者のための運転維持管理の簡素化を図る必要がある。
- 一般市民の十分な理解を得るためにも、水力発電が与える環境負荷の軽減を図る必要がある。
- これまでに利用されていなかった水力エネルギーを有効に活用するため、既設設備を活用するなどの創意工夫が必要となっている。
まとめ (2)

本サブタスクにおいては、小水力発電の新規開発/再開発におけるこれらの課題を克服するために有用である革新的技術31事例を収集した。

今回収集されたこれらの技術は、新型水車や既設設備の活用事例が多く含まれている。

今後は、全技術開発分野における更なる革新が必要となるであろう。

今後更に水力開発を推進するためにも、継続的かつ体系的にデータが追加・蓄積されていくことが望まれる。
革新的技術データリスト (1)

<table>
<thead>
<tr>
<th>分類番号</th>
<th>名称</th>
<th>機関</th>
</tr>
</thead>
<tbody>
<tr>
<td>112-1</td>
<td>マイクロベルトン水車</td>
<td>Stjørdal 3D Verksted</td>
</tr>
<tr>
<td>112-2</td>
<td>高効率・高信頼性・簡略製造フランシス水車（シートメタル水車）</td>
<td>ノルウェー科学技術大学</td>
</tr>
<tr>
<td>112-3</td>
<td>パイプライン型フランシス水車（リンクレス水車）</td>
<td>（株）田中水力機械製作所</td>
</tr>
<tr>
<td>112-4</td>
<td>フープドベルトン水車</td>
<td>ALSTOM Power Hydro</td>
</tr>
<tr>
<td>121-1</td>
<td>超低落差水車発電機</td>
<td>Novatech-Lowatt Turbine Inc.</td>
</tr>
<tr>
<td>122-1</td>
<td>可変速水力発電システム</td>
<td>（財）新エネルギー財団</td>
</tr>
<tr>
<td>123-1</td>
<td>マイクロクロスフロー水車発電機（リッターハイドロシステム）</td>
<td>シンフォニアテクノロジー（株）</td>
</tr>
<tr>
<td>124-1</td>
<td>フランシス水車出口ステーベーン装置</td>
<td>カナダ天然資源省</td>
</tr>
<tr>
<td>211-1</td>
<td>GIS包蔵水力マッピング</td>
<td>ノルウェー水資源・エネルギー省</td>
</tr>
<tr>
<td>221-1</td>
<td>コンピュータによる設計ツール（HYDROHELP）</td>
<td>カナダ天然資源省</td>
</tr>
<tr>
<td>311-1</td>
<td>インライン型水車発電機（ラインパワー）</td>
<td>（株）クボタ</td>
</tr>
<tr>
<td>311-2</td>
<td>横軸円筒固定羽根プロペラ水車（マイクロチューブラ水車）</td>
<td>富士電機システムズ（株）</td>
</tr>
<tr>
<td>311-3</td>
<td>マイクロカプラン水車（ハイドロアグリ）</td>
<td>電源開発（株）</td>
</tr>
<tr>
<td>311-4</td>
<td>インライン型フランシス水車発電機（エネルギー回収システム）</td>
<td>（株）日立産機システム</td>
</tr>
<tr>
<td>311-5</td>
<td>スクリュー型水車発電機（Hydrodynamic Screw）</td>
<td>Ritz-Atro GmbH</td>
</tr>
<tr>
<td>311-6</td>
<td>立軸バルブ水車</td>
<td>東北電力（株）</td>
</tr>
<tr>
<td>分類番号</td>
<td>名称</td>
<td>機関</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>312-1</td>
<td>水圧鉄管代替製品FRPM/FRP管</td>
<td>（財）新エネルギー財団</td>
</tr>
<tr>
<td>313-1</td>
<td>発電機一体型水車（リング水車）</td>
<td>カワサキプラントシステムズ（株）</td>
</tr>
<tr>
<td>313-2</td>
<td>サイホン式小水力発電システム（BEST packaged small hydro station）</td>
<td>Rapid-Eau Technologies Inc.</td>
</tr>
<tr>
<td>314-1</td>
<td>導水路掘削技術（Norhard）</td>
<td>Sira-Kvina Kraftselskap AS</td>
</tr>
<tr>
<td>314-2</td>
<td>超小断面トンネル掘削工法</td>
<td>（財）新エネルギー財団</td>
</tr>
<tr>
<td>321-1</td>
<td>低落差水力発電所ダム基礎処理の合理化設計・施工法</td>
<td>（財）新エネルギー財団</td>
</tr>
<tr>
<td>422-1</td>
<td>取水口塵芥付着低減システム</td>
<td>東北電力（株）</td>
</tr>
<tr>
<td>422-2</td>
<td>逆洗浄式自動除塵装置</td>
<td>（株）秀建コンサルタント</td>
</tr>
<tr>
<td>423-1</td>
<td>水力発電所補修工事シミュレータ</td>
<td>ウィーン工業大学</td>
</tr>
<tr>
<td>424-1</td>
<td>オンライン型ギャップ監視装置（AGMS）</td>
<td>Vibro SystM Inc.</td>
</tr>
<tr>
<td>511-1</td>
<td>魚保護型水車（L-Shape水車）</td>
<td>Rapid-Eau Technologies Inc.</td>
</tr>
<tr>
<td>522-1</td>
<td>水潤滑軸受</td>
<td>ALSTOM Power Hydro</td>
</tr>
<tr>
<td>531-1</td>
<td>景観設計（黒東第3発電所）</td>
<td>北陸電力（株）</td>
</tr>
<tr>
<td>533-1</td>
<td>地下調整池</td>
<td>（財）新エネルギー財団</td>
</tr>
<tr>
<td>621-1</td>
<td>ハイドロバレーコーティング</td>
<td>（財）新エネルギー財団</td>
</tr>
</tbody>
</table>
新型水車・改良水車に関する技術情報
112-2 高効率・高信頼性・簡略製造フランシス水車
（シートメタル水車）：ノルウェー

概要
水車設計は「Norwegian University of Science and Technology (NTNU)」にて行われた
製造方法は簡単（特許申請）
高効率でその値は保証付き
各設備は現場仕様に合わせて設計・製造

特徴
フランシス型水車で簡単な製造方法
高効率で信頼性大

適用範囲
出力範囲：80kW～4MW
有効落差：12～230m

適用実績
2002～2008年までに出力80～3,300kWの設備が7台設置

評価
コスト低減への寄与
簡略化された設計は製造コスト低減に寄与
効率の向上
簡略化された構造にも関わらず効率は90%相当
112-4 フープドペルトン水車:フランス

概要
各ランナバケットを2個のフープリングで挟み込み、ランナディスクへ機械的に結合する革新的な設計になっている。従来のペルトンランナと比較し、機械的特性の向上に加えて、損傷したバケットのみを交換できる等メンテナンス上の大きな利点がある。

特徴
ランナバケットに加わる動的応力の配分および冶金材料の改善により、ランナーの疲れ強度性能向上。
バケット鋳造・加工精度の向上およびその迅速な製作納期

適用範囲
直径1200 mm以上のサイズのペルトン水車

適用実績
4.35MW HP-1R2N（仏）
4.90MW HP-1RN（伊）

評価
コスト低減への寄与
外周のリングにバケットをはめ込んだ構造としているため、一体鋳造の場合と比較して、製造コストの低減およびバケットの部分的交換による費用週減が図られている。

維持管理支援
予備ランナを必要とせずに部分的にバケットを交換することができ、バケットの取り付けを機械的に正確にできることでメンテナンスが容易となっている。

信頼性の向上
部品点数が多くなること、取付ボルトの破損などの可能性は否定できないが、部分的にバケットを交換することができ、信頼性は向上している。
122-1 可変速水力発電システム:日本

概要
回転機の可変速技術を水車・発電機回転速度制御に応用し、変動する落差、流量に応じた回転速度で運転することができる高効率発電システムを開発し、部分負荷および変落差運転における発電効率を向上させ、発電電力量の増加を図るものである。

特徴
変落差、変流量で高効率化を実現

適用範囲
発電所出力1,000kHz～20,000kHz
（フランシス水車適用可能箇所）

適用実績
小里川発電所（中部電力）
P：1,800kW，Qmax：3.0m³/s，He：73.9m

評価
適用性・適用範囲の拡大
フランシス水車、固定羽根プロペラ水車の適用範囲を拡大できる
また、変落差（35%以上）が大きいプロジェクトでも発電計画を合理的にできる
効率の向上
変落差・変流量の範囲の大きいプロジェクトでは、効率向上が期待される
124-1 フランシス水車出口ステーベーン装置:カナダ

概要
出口スティ装置（ESA）は、フランシス水車の中心螺旋渦を排除するためのものである。既存および新設発電所において、部分負荷運転におけるドラフト脈動を軽減・信頼性の高い運転を実現し、装置の寿命を延ばすことができる。

特徴
中心螺旋渦を抑制することで、部分負荷での効率上昇、圧力脈動・不安定現象を低減でき、安定した運転を行うことができる。

適用範囲
中〜大型フランシス水車

適用実績（研究開発段階）
基準落差/50%負荷時に約5%、70%負荷時に約2%の効率上昇、顕著な水圧脈動の軽減

評価
適用性・適用範囲の拡大
部分負荷効率が向上し、運転範囲を拡大することが期待される。また、構造的にあらゆるフランシス水車に適用可能である。
信頼性の向上
水圧脈動等による振動が軽減され、安定した運転状態が期待できる。
効率の向上
部分負荷領域で、効率の改善がされている。
311-6 立軸バルブ水車:日本

概要
低落差地点に採用される水車のうち、横軸バルブ水車は分解・組立工期が長い、立軸カプラン水車は渦巻きケーシングにより発電所面積が大きい等の問題を解消するための代替機種として開発。
立軸バルブ水車では、水車・発電機部品の上方吊込み・吊出しおよび水車横取り方式の採用による分解・組立工期の大幅短縮や円筒ケーシングの採用による建屋面積の大幅縮小が可能である。

特徴
従来の立軸カプラン水車に比べ水車効率は向上
横軸バルブ水車に比べオーバーホール期間を従来の2/3に短縮簡素化した構造であるため保守が容易

適用範囲
落差30m以下

適用実績
第二上野尻発電所（東北電力）
P：13,500kW，Qmax：100m³/s，He：15.54m

評価
コスト低減への寄与
立軸カプラン水車発電機と比較し、狭い場所での水車発電機設置が可能であり、土木工事費の低減を図れる。
効率の向上
立軸カプラン水車に比べ、水車効率が優れている
維持管理支援
横軸バルブ水車と比較し、オーバーホール期間の短縮が図れる。ただし、カプラン水車に比べるとメインテナンス性は劣る。
112-1 マイクロペルトン水車：ノルウェー

概要
比較的高落差・小流量の小河川用パッケージ型水車発電装置
顧客の仕様に合わせた設備、遠方制御装置を備えることも可能

特徴
現場での設置が容易
簡略化された構造なので運転保守が容易
1〜5ノズルの自動切換装置付き

適用範囲
出力範囲：15〜150kW
有効落差：30m以上

適用実績
2005〜2007年の間に100台が出荷・据え付けられている

評価
コスト低減への寄与
ランナバケットの取替えが容易であり、かつ、そのコストも安価である。
ランナバケットの弾性が改善されており、耐摩耗・耐亀裂となっている。
121-1 超低落差水車発電機:カナダ

概要
落差1.4〜3.2mの地点に適した設計となっており、土木設備の簡略化、据付の容易性等を考慮してkW当たり建設単価削減と信頼性の向上を図っている。このために、従来型大形水車とは異なった土木設計コンセプトの基に大形ランナを適用している。更に、永久磁石式発電機を水車に直結して可変速度発電設備を構築している。また、環境調和を考慮して水中設置とし騒音低減、かつ、魚類に優しい設備となっている。

特徴
落差が3.2m未満の超低落差地点の水力発電所設置に適した可変速型水車発電機
標準製品：水車ランナー径が3.5〜5.6m迄の5種類
簡素化した設計で土木基礎工事のコスト削減が可能
魚類保護型水車
埋込型塵埃レーキクリーナー、設備引上用油圧式リフト装置装備

適用範囲
出力範囲：100〜500kW
流量範囲：10〜30m³/s
有効落差：1.4〜3.2m

適用実績
1.62mx11.2m³/sx138kW, 1.4mx13m³/sx142kW, 2.1mx13m³/sx198kW

評価
適用性・適用範囲の拡大
他の水車形式では利用が困難な3.2m以下の落差を利用可能とし適用範囲を拡大。
コスト低減への寄与
土木構造物が簡素化でき、水車、発電機、除塵機が一体構造となっていることから、土木工事も含めて大幅に費用低減ができる。ただし、電子部品が追加されており、これらの予備品の確保が必要である。
信頼性の向上
除塵対策、洪水対策など良く検討され、永久磁石発電機と可変速（インバータ）の組み合わせが採用されており水車を低回転速度で回転させることで、信頼性を確保している。ただし、流木などの異物に弱いと考えられる。
維持管理支援
部品点数が少なく、メンテナンスが容易である。また、塵芥の除塵が維持管理費に占める割合を低減するために、予め除去装置と一体としている。
環境影響の緩和
魚類保護型の水車設計となっている。
123-1 マイクロクロスフロー水車発電機
（リッターハイドロシステム）：日本

概要
永久磁石を使って非常にコンパクトな、10〜1,000W程度のクロスフロータービン発電機ユニット。

特徴
最大出力0.5kW、1.0kWの二種類を標準ユニット化
水力発電機ユニット、コントローラ、バッテリーユニットの三種類にユニット化
発電機と水車が一体化されかつ軽量（50kg）で工事費の削減効果が見込まれる
構造が簡略化され保守が容易

適用範囲
出力範囲：0.01〜1.0kW
流量範囲：4〜10L/s
有効落差：0.6〜10m

適用実績
2006〜2007年間に15件

評価
適用性・適用範囲の拡大
海外未電化地域や遊休落差利用などのマイクロ水力地点に適用の可能性が広がる。

性能曲線図
マイクロカプラン水車
（ハイドロアグリ）：日本

概要
水車発電機と制御系をパッケージ化した発電システムを、既設農業用水路の落差工に設置し、土木工事費の低減を図った30kW程度の発電システム

特徴
僅かな落差を利用した小型カプラン水車で流量の自動調整が可能
バイパスを持たず水路に設置するのみとするため、使用水量を流下できる無拘束運転が可能
同一水路の落差工に複数設置可
水流を維持した状態で、水車発電機の脱着が可能

適用範囲
有効落差：2.0〜3.0m
流量範囲：0.8〜2.4m³/s

適用実績
落差2.0m、流量2.4m³/s（4基）

評価
コスト低減への寄与
ユニット化したものを水路内の落差工に設置するため、行程の圧縮、土木工事の削減を図った。
適用性・適用範囲の拡大
従来適用していなかった農業用水路など小規模水力発電の適用範囲の拡大を図った。

ハイドロアグリ現地写真
311-5 スクリュー型水車発電機
（Hydrodynamic Screw）：ドイツ

概要
既存の水路あるいは堰に使用できるスクリュー型小型水力発電装置。頑丈で耐摩耗性に優れ、細目スクリーンを必要としない水車で、魚類保護型である。

特徴
最大設計流量時には同仕様の従来型およびマイクロ水車よりも高い水車効率を示し、かつ、部分流量時でも平坦で安定した効率特性を有する。構造も頑丈で耐摩耗性に優れ、故障も少なく、魚を通すことが出来る魚類保護型水車である。

適用範囲
出力範囲：3～300kW
流量範囲：0.5～5.0m³/s
有効落差：1～10m

適用実績
落差1.0～6.0m，流量0.065～6.0m³/s，出力1.05～140kWの範囲の水車発電機52台の納入実績あり。

評価
環境影響の緩和
魚類保護型の水車設計となっている。
適用性・適用範囲の拡大
10m以下の低落差領域で利用可能としており、適用範囲を拡大している。欧州では数多くの設置例あり。
維持管理支援
構造が簡単なスクリュー状水車（ランナ）でこのランナに塵芥がつまりにくく、維持管理が容易である。
313-2 サイホン式小水力発電システム
（BEST packaged small hydro station）：カナダ

概要
河川・小川等にて2〜8m程度の比較的低い落差のところに設置でき、廉価で環境に配慮した設備。
この発電設備出力範囲は10〜200kWで、水車下流側に約100m程離れた放水庭まで配管した事例がある。
魚類保護型水車ランナは、水車ハウジング内に発電機および制御機器と一緒に横軸形式で取り付けられ、ハウジング底面には水車への取水除塵スクリーンが設けてある。

特徴
ハウジング底面取付水平除塵スクリーンは、水車ハウジングへ水を吸引するに必要な上水槽の深さを浅くすることができる。
水車ハウジング内にて発生した熱は、この除塵スクリーンの冬季運転／凍結防止に使用できる。
この除塵スクリーンの目詰りは監視装置で検出され、このサイフォンを破壊／逆流させることでこのスクリーンに詰まったゴミをとり除くことができる。
サイフォン頂部に溜まった空気は、水車ランナにて小気泡に砕き水車下流側への流水と一緒に排出する。

適用範囲
出力範囲：10〜200kW
有効落差：2〜8m

適用実績
Brantford市浄水場：落差=4m,出力=130kW,52inch口径水車,1985年
Laurentian Lodge/Ontario：落差=7m,出力=26kW,20inch口径水車,1983年

評価
コスト低減への寄与
水車、発電機、除塵スクリーンが鋼板製ハウジング内に一体構造となっていること、サイフォン形式となっていることから、土木工事も含めて費用低減ができる。
環境影響の緩和
水車内を魚類が傷つくことなく通過できる構造となっている。また、魚類をこの取水口から遠ざける設備が設けられている。
適用性・適用範囲の拡大
落差2〜8mの比較的低い地点に適用でき、河川維持放流設備へも利用可能としており適用範囲を拡大している。
パイプライン型フランシス水車
（リングレス水車）：日本

概要
変落差・変流量対応など従来のフランシス水車の良いところを残し、マイクロ水力発電に適用できるよう「コンパクト」「構造がシンプル」「低価格」「メンテナンスコストが安い」といった特徴を持つ200kW以下の水車

特徴
プロペラ（チューブラ）水車より高落差・小水量に適用可能、可変流量対応
従来適用されていたガイドベーンリンク・ピン機構を排除し、ギヤ機構を適用することで、ガイドベーン操作機構部を簡素化
従来型フランシスに比較して入口管・出口管等の配置の自由度が大きい

適用範囲
出力範囲：Max.200kW
流量範囲：0.15〜0.5m³/s
有効落差：30〜70m

適用実績
上水配水地、減圧槽、ポンプ場等2007年〜2009年間に7件

評価
コスト低減への寄与
管路挿入型であるため拡張工事が不要になり、工事費（土木工事費、配管の組換工事等）の低減が図れる。

適用性・適用範囲の拡大
従来適用していなかった上下水道・工業用水など水力発電の適用範囲の拡大を図った。また、流量調整機構（可動ガイドベーン）を有しているので適用範囲の拡大が図れる。
インライン型水車発電機（ラインパワー）: 日本

- 概要
インライン型水車発電機は、浄水場等で既存のパイプラインに容易に取り付けられるようなパッケージ型で、3〜90kW程度の発電システム

- 特徴
水車と発電機が一体となった低コスト設備
配管の途中に設置可能な省スペース化機器
発電機内臓型のため、騒音を低減
ポンプ製造技術を応用した流体設計による高効率・安定品質
油が絶対に混入しない上水道向け構造

- 適用範囲
出力範囲: 3〜90kW
流量範囲: 0.07〜1.8m³/s
有効落差: 3〜70m

- 適用実績
2003年〜2007年の間に配水場等に6件設置

- 評価
コスト低減への寄与
管路挿入型である為、拡張工事が不要になり工事費（土木工事費・配管の組替工事等）の低減を図れ、標準化により、設計、部品の供用として費用の低減を図れる。
適用性・適用範囲の拡大
従来適用していなかった上下水道・工業用水など水力発電の適用範囲の拡大を図った。
維持管理支援
一体化していることで構造が単純でケーシングも頑丈にできているため、維持管理が容易である。
311-2 横軸円筒固定羽根プロペラ水車
（マイクロチューブラ水車）: 日本

概要
既設減圧弁や用水路の落差工などにより従来活用されていなかったエネルギーを有効活用する3〜250kW程度のマイクロ水力発電システム
機器費用の削減、年間発生電力量の増加、メンテナンス費の容易性を追求した発電機器

特徴
3種類の標準ユニットで系列化
直列配置により中落差でも適用
広範囲な運転領域で高効率化を実現
水車・発電機のパッケージ化で据付可能により工事費低減
筒素化した構造であるため保守が容易

適用範囲
出力範囲: 3〜250kW
流量範囲: 0.1〜3.0m3/s
有効落差: 2〜20m

適用実績
2001〜2005年の間に9件設置

評価
コスト低減への寄与
管路挿入型である為、拡張工事が不要になり、工事費（土木工事費、配管の組替工事等）の低減、かつ、標準化により設計・部品の供用化が出来て費用低減が図れる。
適用性・適用範囲の拡大
従来適用していなかった上下水道・工業用水設備などへ水力発電設備の適用範囲の拡大を図った。また、可動ランナーベーンの適用により、流量調整を行うことができ、適用範囲の拡大を図れる。
効率の向上
流量調整機構（可動ランナーベーン）を有していることから、変流量での効率向上を図れる。
311-4 インライン型フランシス水車（エネルギー回収システム）：日本

概要
ビルや工場等に設置されている蓄熱式冷温水供給システムなどの未利用水力エネルギーを利用する0.5〜9kWのマイクロ水力発電システム有効落差に応じた水車の最適回転速度制御により高効率のエネルギー回収が可能配管の途中に設置可能のように発電機一体型インライン水車を採用し、小型コンパクト化を実現

特徴
落差変動に応じた最適回転速度制御で、高効率運転を実現水車発電機一体のインライン型によるコンパクト化で、省スペースを実現並列、直列の複数台設置が出来るため、幅広い流量と落差の領域に対応可能

適用範囲
出力範囲：0.5〜9.0kW
流量範囲：0.6〜2.8m³/min
有効落差：8〜39m

適用実績
2.4kW x 2台、9.6kW x 1台、6kW x 1台

評価
コスト低減への寄与管路挿入型である為、拡張工事が不要となり工事費（配管の組替工事等）の低減が図れる。また、設計・部品の標準化・供用化により費用の低減が図れる。適用性・適用範囲の拡大従来適用されていなかったビルや工場内の空調冷却水配管など水力発電の適用範囲の拡大が図られている。

効率の向上
最適回転速度制御により効率向上を図った。
313-1 発電機一体型水車（リング水車）：日本

概要
これまで見過ごされてきた1,000kW以下の未利用水力エネルギー分野を対象とした、小水力用発電機一体型水車システム狭隘部にも設置可能なコンパクトサイズ、水質に影響を与えない低騒音のオイルレス機構、メンテナンスの容易なシンプルな構造を追求した発電機器

特徴
標準ラインナップによる系列化
高性能水車と埋込磁石発電機による高い効率
水潤滑軸受採用により完全オイルレス化
高落差では、2台以上の水車を直列に配置し適用

適用範囲
出力範囲：20〜500kW
流量範囲：0.14〜2.8m³/s
有効落差：5〜30m

適用実績
利水ダムにて実証試験

評価
適用性・適用範囲の拡大
従来適用していなかった上下水道・工業用水など水力発電の適用範囲の拡大を図った。

従来型プロペラ水車

リング水車

従来型プロペラ水車との比較図
511-1 魚保護型水車
（L-Shape水車）: カナダ

概要
従来の魚類通過方式のシステムで発生する魚類へのダメージを、なくす、あるいは低減させるような魚類の通過を許容する水車の開発
利点としては、魚類通過プロセスにおいてエネルギー回収が可能

特徴
既存の水車と同等の効率でエネルギーを取り出すことが出来る、
低速度高能率水車ユニットである。
既存の単一制御式低落差水車よりもコストが低い。
ガイドベーンを使用しないため、同等の適用において、フランシス水車よりも環境性能が高い。

適用範囲
最大落差: 30m
最大流量: 10m³/s

適用実績
モデルの実験室試験において、流量およびキャビテーションを含めた水車特性を確認

評価
環境影響の緩和
水車内を通る魚類へのダメージあるいは死亡率を最小限にして発電出来るような構造であり、環境に配慮された発電設備である。