VALUABLE MAINTENANCE OF HYDRO POWER

A review of 20 years of Norwegian R&D in hydropower maintenance
Outline

• Background
• Key results
• Failure model
• Success criteria
Hammern hydropower plant

Operational since 1900
Upprating 1927
Hydropower in Norway

Around 1400 power plants, around 2000 units
Installed capacity 30 172 MW
Annual production 130.2 TWh
Average age ~ 43 years
20 years of collaborative R&D in hydro O&M

• Maintenance systems (1992-1997)
• Technical operation and maintenance (1997-2001)
• Decision tools for maintenance planning (2001-2005)
• Value added maintenance in power production (2006-2010)
Hydropower maintenance towards 2030

- To develop scenarios for hydropower in Scandinavia in general, and maintenance and rehabilitation in particular.
- To identify new technical, organizational, commercial and regulatory solutions and products.
- To identify need for new knowledge to meet future challenges.
Common features

- Some of the scenarios have common features
 - Inflection point (negative \rightarrow positive)
 - Climate changes
 - Green energy
 - Peak power has high value
 - Recruitment problems
 - Competence building
 - Large energy companies
 - Maintenance
 - Continuous monitoring
 - Pit stop maintenance
 - Hydropower will still play an important role in the energy system in 2030
Conclusions

• Scenario process resulted in
 • 93 mini scenarios, 5 main scenarios
 • List of challenges and recommendations for the hydropower industry in Norway and Sweden

• Scenarios can be used to create a basis for
 • identification of challenges, possibilities and restrictions
 • robust decision under uncertainty

• Easy to involve different persons / groups
• Challenge to distance oneself from daily routine to become creative
• Process requires good management and guiding
Key results

• Maintenance philosophy
• Decision tools
 • Technical-economic model
 • Multi-criteria decision aid
 • Optimal Maintenance Toolbox v 3.0
• Testing of maintenance paradigm
 • RCM
 • Online monitoring
 • 5s
 • Pit stop
 • WCM
World class maintenance

Maintenance management processes according to a draft European standard prepared by CEN / TC 319 / WG 8

[Diagram showing the processes of Objectives and strategies, Planning, Implementation, Modification, Improvement, Reporting and result analysis, with categories for Resources such as Human resources, Spare parts, Ancillary systems, Information]
Failure model
Technical condition states

- The condition development is often observable
- Condition monitoring handbooks by Energy Norway used to classify the condition

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No indication of degradation ("as good as new")</td>
</tr>
<tr>
<td>2</td>
<td>Some indication of degradation. The condition is noticeably worse than "as good as new".</td>
</tr>
<tr>
<td>3</td>
<td>Serious degradation. The condition is considerably worse than "as good as new"</td>
</tr>
<tr>
<td>4</td>
<td>The condition is critical.</td>
</tr>
<tr>
<td>5</td>
<td>Fault state.</td>
</tr>
</tbody>
</table>
Lifetime model

Linking the 5 states with the life curve:

- Technical condition / deterioration
- Time [years]
- State
 - 1
 - 2
 - 3
 - 4
 - 5

θ₁, θ₂, θ₃, θ₄
Expert judgement tool
Results from the model

- Calculation of failure probability
- Calculation of expected remaining life
- Simulation of condition development
Case - Eidsiva:
Planning of maintenance work at Osa power plants using elements of pit stop methodology

Maren Istad, SINTEF Energiforskning
Knut Ringsrud, Eidsiva Vannkraft
Case – SN Power

- Global maintenance strategy
 - RCM analysis
 - Systematic use of indicators
 - Continuous improvement
- Methods and tools from the maintenance projects

Norwegian origin, global application
System collecting and sharing life time data (SysLife)

- Components & design
- Technical condition
- Faults and failures
- Maintenance history
- Operation and loading

- Cost-benefit analysis
- Maintenance planning
- Reliability analysis
- Risk management

Data and information exchange

Web services

Raw data → Data analysis/parameter estimation → Processed data (live curves, etc.)

- Damage atlas
- Handbooks
- Rules/formats (for data registration and exchange)

System & tools at companies: CMMS, ERP, etc.
Framework for risk and profitability analysis based on technical condition (FRAM)
Success criteria

1. Collaborative research project
2. Active involvement from the power companies
3. Support from the national research council
4. Training courses, seminars and workshops
The bottom line

Cost (2012 US$):

Power companies: 8.0 mil. US$
National research council: 4.8 mil US$
SUM: 12.8 mil US$

"Correct implementation in our own organization will over time give an 20% added value to our maintenance."

Statement from user group

Potential added annual value of maintenance: 128 mil US$