

Annex-XVI : Hidden Hydro Opportunities Present Status of "Hidden Hydro Opportunities" Development in Japan

4th February. 2019

Shuhei TAKEGAWA Japan Electric Power Information Center, Inc.

1

Contents

1. Tasks of Annex-XVI "Hidden Hydro Opportunities"

2. Case Studies for Subtask.2 in Japan

3. Case Studies for Subtask.3 in Japan

1. Tasks of Annex-XVI "Hidden Hydro Opportunities"

The work plan will be subdivided into 4 Tasks.

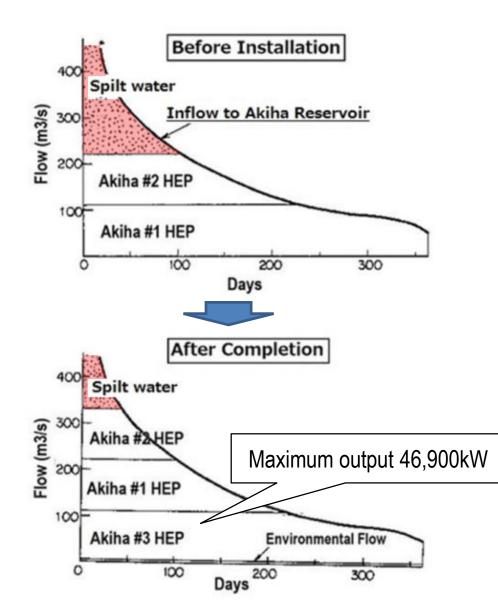
Subtask 1. Updating Hydropower Inventories

Subtask 2. Improving Performance from Existing Hydropower

Subtask 3. Adding Power to "Non-power Dams" and Water Management Facilities

Subtask 4. Hydropower Technology Research and Innovation in the context of Hidden Hydropower Opportunities

2. Case Studies for Subtask.2 in Japan

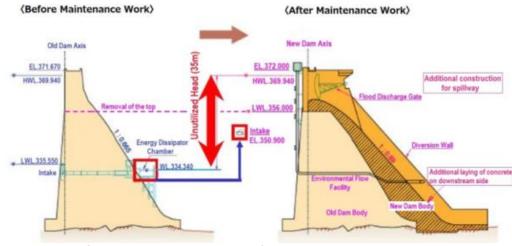

Subtask.2 : Improving performance from Existing Hydropower

- Case 1. Expansion of Equipment
- Case 2. Improvement of Dam
- Case 3. Improvement of Power Plant Operation and Diversion

Case 4. Optimized output by water diversion between existing hydropower plants

Case 1. Expansion of Equipment

- Effective utilization of spilt flow from the existing dam by adding small hydropower plant -



The small hydropower plant is installed <u>to produce</u> <u>the maximum hydropower by utilizing the overflow</u>, occurred approximately 100 days a year from existing dam.

Equipment of Akiha #3 Hydro Power Plant

Turbine	Туре	(Main Turbine) Vertical shaft, Francis	(Small Turbine) Horizontal shaft, Francis			
	Output	46,500kW	1,800kW			
	Unit No.	1	1			
Generator	Туре	(Main Generator) Vertical shaft, 3 phase Synchronous	(Small Generator) Horizontal shaft, 3 phase Synchronous			
	Capacity	47,600KVA	1,700KVA			
	Unit No.	1	1			

Case 2. Improvement of Dam

Schematic Diagrams of Dam's maintenance work

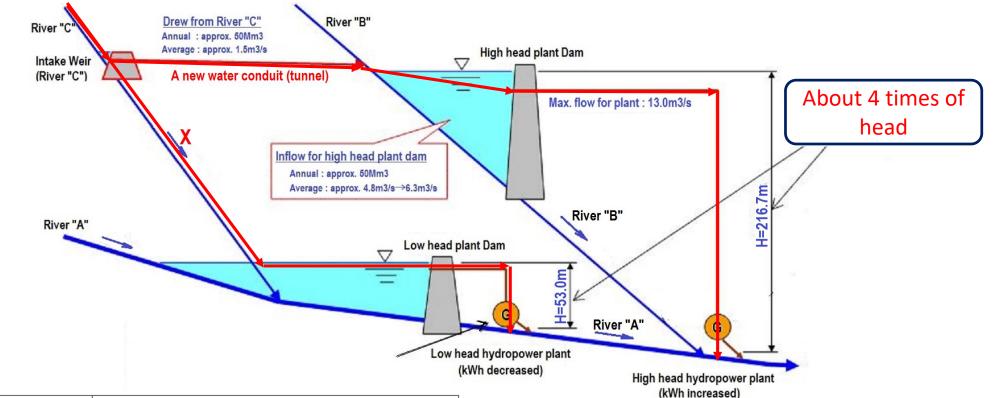

Photo-1: Before maintenance

Photo 2: After maintenance

Item	Before maintenance work	After maintenance work	
Туре	Concrete gravity dam	Concrete gravity dam	
Dam height	62.10 m	62.43 m	
Crest length	35.15 m	39.50 m	
Dam volume	31,000 m ³	45,000 m ³	
Effective storage capacity	$12,995,000 \text{ m}^3$	7,490,000 m ³	
Flood control capacity	$720 \text{ m}^{3/s}$	$1,610 \text{ m}^{3/s}$	
Flood control method	Tunnel-type spillway: 720 m³/s	Tunnel-type spillway: 720 m³/s Overflow-type spillway: 890 m³/s	

	Before redevelopment After redev		velopment	
Power plant name	Taishakugawa Power	Shin-Taishakugawa	Taishakugawa	
	Station	Power Station	Power Station	
Name of the water system / river	Taishakugawa River and Fukumasugawa River in the Takahashigawa River system	Taishakugawa River in the Takahashigawa River system	Fukumasugawa River in the Takahashigawa River system	
Maximum output	4,400 kW	11,000 kW	2,400 kW	
Maximum discharge	$5.7 \text{ m}^{3/s}$	$10.0 \ { m m}^{3/{ m s}}$	$3.1 \text{ m}^{3/s}$	
Effective head	95.17 m	129.0 m	$95.17 \mathrm{~m}$	
Power generation	Reservoir type / dam	Reservoir type / dam	Run-of-river type /	
type	canal type	canal type	canal type	

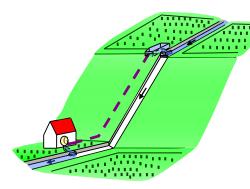
Case 3. Increased output from existing hydropower plants based on raised water levels or changes

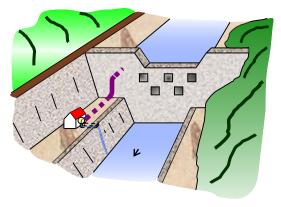
Items	High Head Hydropower Plant	
nems	Original	After providing a new water tunnel
Max. Output(kW)	24,200	24,200
Max. Turbine Flow (m ³ /s)	13.0	The same flow with original (Max. drawing flow from "River C": 5.6m ³ /s)
Effective Head(m)	216.7	216.7
Annual Power Generation (GWh)	Approx.71	Approx.94 (Increased GWh : approx.17)

Increased power generation for high head hydropower plant <u>Approx. 17GWh</u>

7

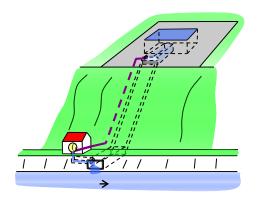
(Before : approx. 71GWh, After : approx. 94GWh)


Case 4. Optimized output by water diversion between existing hydropower plants


- The Shumarinai Power Plant generates the power by utilizing the irrigation discharge from the upper dam(Shumarinai Lake) during the irrigation period.
- In the non-irrigation period, the river water flowing into the lower dam is pumped to the upper dam and is fed to Uryu Hydropower Plant having a higher potential energy than Shumarinai Power Plant.

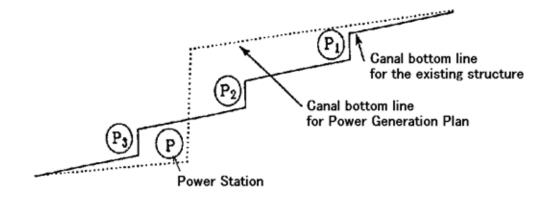
3. Case Studies for Subtask.3 in Japan

Subtask.3 Adding Power to "Non-powered Dams" and Water Management Facilities


Case 1. Irrigation Waterways

Case 2. Water Flow from Agricultural & Multi-purpose Dams

Case 3. Water Flow from **Check Dams**



Case 4. Water Works


Case 5. Sewage Plants

Case 1. Cascade Micro Hydro Generating System in Irrigation Waterways

Items	Specification	
Flow	Irrigation period : 2.4 m ³ /s Non-irrigation period : 1.3 m ³ /s	
Head	2.0 m	
Turbine Type	Kaplan, Vertical	
Max. Output	30kW/Unit	

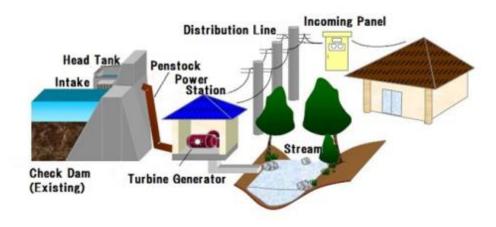
4 units are installed on the same irrigation waterways without changing the structure of the irrigation waterways.

Case 2. Small Hydropower Plant installed in Water Supply Dam

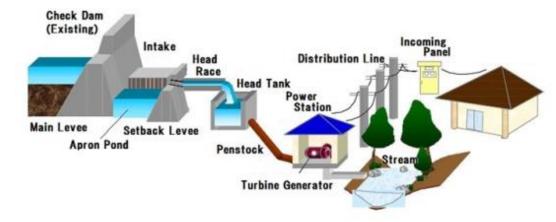

<u>Yunishikawa Dam</u> Dam height : 119m Crest length : 320m Storage capacity : 75million m³

Yunishikawa Dam is used for "water supply ", "flood control", "maintenance for function of flow".

At Yunishikawa Dam, the environmental flow of 0.54 m³/s flow must be discharged constantly in order to maintain the normal function of river water.

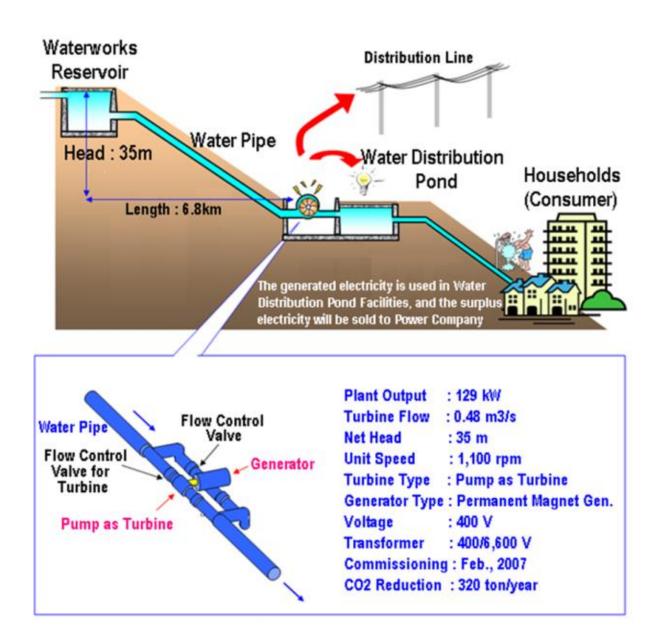

Environmental flow is used to generate the hydropower for dam management.

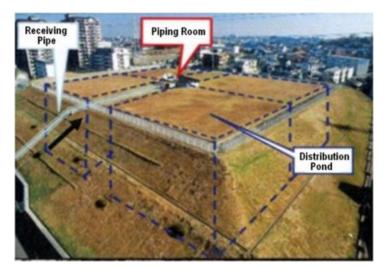
Case .3 Hydropower Plant Installed in Check Dams


Power Generation Method

(A) Installed beside Check Dam

(B) Conveyed by Head Race


(B-1) Water taken from Apron Pond



(B-2) Water taken from Main Bank

Case 4. Micro Hydropower Unit in Water Distribution Line

Outline of Distribution Pond

Out view of Piping Room (Generating Room)

Case 5. Micro Hydro Unit in Sewage Water Treatment Center

Annual Output : 800,000(kWh), Annual CO₂ Gas Reduction : 300(tons)

(Source) Bureau of Sewerage Tokyo Metropolitan Government

Thank you for your kind attention

JEPIC