

Examples of Asset Management Good Practice

Niels Nielsen February 2019, Tokyo, Japan

20th Century Hydropower Plant Management approach:

"If it ain't broke, don't fix it".

- Maintenance, repairs and replacements focused on direct issues, rather than effects on related equipment
- Hydroplants required near continuous repair to one piece of equipment or another.
- Cumulative costs of repairs could exceed the value of the powerplant over a shortened time frame.

By the mid 1990's hydroplant management began to move to an asset and risk management approach.

Drivers for Change:

- As fleets of existing hydro plants aged, former management approach became increasingly inflexible and untenable
- Traditional managers retired and were succeeded by staff with experience and focus on business
- External communication and networking showed use and benefits of asset management for infrastructure and industry
- Increasing need to meet statutory obligations drove the adoption of risk-based processes to assess threats to the business.
- Privatization and electricity market deregulated increased the focus on performance and value.
- > Boards became responsible for, asset and risk based decisions.

AM

The Institute of Asset Management

© Copyright 2014 Institute of Asset Management (www.theIAM.org/copyright)

Asset Management (AM) Good Practice.

A systematic approach based on considering an individual or fleet of hydro plants from a holistic perspective, with management decisions based on:

- maximizing level of service (LOS),
- > minimizing cost of service (COS),
- managing risk and
- > meeting regulatory obligations,

with the overall purpose of meeting corporate objectives and maximizing asset value.

Asset Management Objectives

Key Elements of Asset Management include:

- Identifying issues and potential risks that could affect asset performance
- Assess the issues and risks in terms of their importance
- Identify appropriate treatments to manage the issues and risks
- Prioritize between options and alternatives
- Select the project and develop scope, cost and schedule
- Deliver the work plan and evaluate the outcomes

Asset Information Definition for Decision Making, Document and Access/Interface System
Governance Responsing to Aki
Workforse Filening for 12-1ser Filen
Production Fluming

Issues and Risks

- An Issue is "an event that has happened, is happening or is known to be going to happen"
- A Risk* is "an event that may or may not happen".

*Risks can relate to both the strategic and operational context and be internal or external to the organisation.

Issues and Risk Identification

Identification of issues normally evolves from routine or corrective maintence and regular condition and performance assessments.

Risk Identification is the process to document any events that could occur and potentially compromise the capability, safety or performance of the hydroplant

Issues and Risk Assessment - Two Approaches

Station Asset Management Plans cover all issues and risks identified at an individual hydro power station, their assessment, analysis and program of treatment. By understand all intervention that is needed to meet the overall strategic objectives of the station, a full plan of activities can be developed. This also enables the station (or asset) value to be established.

Asset-Type Management Plans cover approaches for individual or closely dependant assets, such as turbines and generators across multiple units or the fleet of hydro plants. These plans allow performance and condition comparisons across similar unit types in different hydro power plants. A program to replace Kaplan turbine units across multiple plants allowed a planned program for work crews, cost reductions based on unit volume and a reduction in spare part inventories.

Prioritization

The overall asset management approach is to meet corporate objectives and maximize asset value.

However, with possible constraints (financial, work force etc.,) not all works can be undertaken immediately.

Prioritization helps make good choices, which projects and what order!

- Meeting regulatory requirements (safety, due diligence). If not immediately possible, risk control measures should be considered.
- Addressing high ranking risks at the asset level.
- Selecting projects that maintain or enhance productivity from the most productive, and therefore valuable, hydro plants.

Evaluation of Treatment Effectiveness

Water to Wire (W2W) Risk Map

Progress from 2008 to 2018

W2W Risk Map (Effective Date Wednesday, 30 July 2008)

STATION

	en mon																																																	
	1	2	3	1	2	з	4	5	6	1	2	1	1	2	з	4	5	6	1	2	3	4	5	1	1	1	1	1	2	з	4	1	2	3	1	1	2	1	1	2	3	1	1	1	1	1	1	1	1	1
Station Priority	1	1	1	2	2	2	2	2	2	3	3	4	5	5	5	5	5	5	6	6	6	6	6	7	8	9	10	11	11	11	11	12	12	12	13	14	14	15	16	16	16	17	18	19	20	21	22	23	24	25
Machine Priority	1	2	3	4	5	6	7	8	32	9	10	11	33	34	35	36	37	38	12	13	14	39	40	15	15	17	18	19	20	21	41	22	42	43	23	44	24	25	26	45	45	27	47	28	29	30	31	48	49	50

	RDRD	RD	RDR	DRO	DRD	RDR	R D I	RDR	DR	DR	DRI	DR	DRO	DRO	R	R	DRC	DRI	DR						DR	D R	DRC	RO	RD			D R			DR	DRC			RD	RD	R D	RD	RDR		1 0
Referable & Prescribed Dams								Π	\Box												h							İΤ	П	T	T		m	ГП			T	Π	T	T	T				Τ
Non-Referable & Non-Prescribed Dams																																													ſ
Dam Mechanical Assets																																													
Forebays & Intakes (incigates & valves)																																													
Conveyancing (inc gates & valves)														П																															I
Hilltop Valves																																													I
Penstock																																													
Tailrace																																													
MIV, including Isolation Valves						Ш																																							
ReliefValve																									Ш.																				
Turbine								_										Ц										Ц											ш		Ш				
Bearings & Lubrication																																						ш			Ц	Ц			4
Cooling Water System																							\square				Щ																\square		Ļ
Rotor																																								\square	Ш				
Stator							Ц			Щ					Щ	Щ	Ц	Щ										Ш							\square		Ш	Ш		Ц				Щ	Ц
Governor		\square											Щ							_							Щ			Ц							U	_					Ш		L,
Excitation System																																													4
Machine Protection & Control								_																				ш										ш							J
Busbars & Cables (inc Protection)															1																									Ц				44	
Switchgear															4																						4				Ц.				
Transformers								ш																														_							
Earthing							4				Щ			Ц	4																						Щ								
AC Supplies				_												Ц.	4	Щ	Ц																								Ш		
DC Supplies								_																Ц.				Ц.												Ц					
Fire Protection & Dewatering							4													ш			\square																						
Station Services																				1																	44						Щ	4	4
Land & Buildings								\square	111						Ц							\square	\square					11			11	\square					44	\downarrow		$\downarrow \downarrow$	\square	\square		$\downarrow \downarrow$	4
Roads									11																						11	112			117										

	APM Rat	ting Type	RD	R D	RDR	DR	DRC	RD	RDR	DR	DRD	RDR	DRD	RD	RDR	DRC	RD	RDR	DR	DR	DRD	RD	RDR	DRD	RDR	DR	DRD	RDRI	RD	RDR	DRD	RD	RDR	DRI	RDI	DR	DRD	RD	RDRD	DRD
trong and Reliab	le		*		*	*		*	*	,	• •	*		TΠ			*	*		* *	*	*	*			* *			*		*									
Aajor Dams																																								
mal Dams																																								
pillway Gates																																								
ontrol Gates & Valve	85																																							
orebay/Intake Gates	5																																							
orebay/Intake Struct	tures																																							
anals & Flumes																																								
ipelines																																								
unnels																																								
πv																																								
enstocks																																								
ipeline Protection Val	lves																																							
AIV																	4				_																			
RV																																								
urbines / (Pumps)			GOZIN	unner	cracks																																			
ooling Water System	n & Heat Ex																																	\square		\downarrow				
iovernors																																				\downarrow				
xcitation																																								
Aech. Protection & Co	ontrol																																							
lectrical Protection																																		\square						
lternators / (Motors))																				_													+++						
nstrument Transform	iers																				_										\vdash								+ $+$	_
ircuit Breakers																					_										\vdash								+ $+$	
IV Cables, Bus work &	©/H lines																				_	\vdash									\vdash			$\left \right $		+	+	+++	+ $+$	
solators & Switchyard	d Equip.																				_	\vdash									\vdash			++		+	+	+++	+ $+$	
ower Transformers																					_	\vdash									\vdash			+++		+	+	+++	+ $+$	
arming				-																				F	ood prote	ction	Unit	transformer	5		\vdash					+	+			
tation Services	_																																							
ire Protection System	n					++-											+														\vdash			+++						
nideor.																																								
indees																																		++						++
uildines																																								

I hope you have enjoyed

Examples of Asset Management Good Practice

Thank You